
11100 Johns Hopkins Road
Laurel, MD 20723-6099

1

Contextual affordances in context-
aware autonomous systems
Angeline Aguinaldo

Research Software Engineer, Johns Hopkins University Applied Physics Laboratory
angeline.aguinaldo@jhuapl.edu

Computer Science PhD Student, University of Maryland College Park
aaguinal@cs.umd.edu

NIST Compositional Structures for Systems Engineering and Design Workshop
National Cybersecurity Center of Excellence
November 2022

mailto:angeline.aguinaldo@jhuapl.edu
mailto:aaguinal@cs.umd.edu

Contents

3 November 2022A. Aguinaldo 2

1. What is contextual affordance?
- Motivating example

2. Using symmetric delta lenses for the affordance relation
- What are the structures?
- What kind of queries can we answer?

3. Ongoing work
- Developing a categorical database using AlgebraicJulia
- Test and evaluation plan

What is contextual affordance?
Background

3 November 2022A. Aguinaldo 3

Making use of context in robotics

4

https://automationforum.co/what-are-sensors-on-a-robot-and-why-are-sensors-
important-to-robots/

3 November 2022A. Aguinaldo

A context-aware autonomous agent is one that is able to adjust its behavior in response to dynamic context
information.

A knowledge-based agent makes use of structured representations of knowledge to decide what action to take next.

Objects in
environment Actions of agent∼(Barck-Holst 2009), (Cruz 2016), (Kruger 2011), (Montesano 2007)

Affordance relation in robotics

Motivating Example

3 November 2022A. Aguinaldo 5

Actions Scenes

AI2THORPDDL

Initial Scene Graph

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

Motivating Example

3 November 2022A. Aguinaldo 6

Actions Scenes Initial Scene Graph Afforded Task Plans

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

AI2THORPDDL

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

Motivating Example

3 November 2022A. Aguinaldo 7

Actions Scenes Initial Scene Graph Afforded Task Plans

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Δ! Δ"

AI2THORPDDL

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

Motivating Example

3 November 2022A. Aguinaldo 8

Actions Scenes Initial Scene Graph Afforded Task Plans

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Δ! Δ"

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

Δ#

Q-A. Given a change in the environment, what
changes in the afforded task plans?

AI2THORPDDL

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

Motivating Example

3 November 2022A. Aguinaldo 9

Actions Scenes Initial Scene Graph Afforded Task Plans

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Δ! Δ"

make-veggie-sandwich :=
slice-object Lettuce
slice-object Tomato
slice-object Bread
put-object Lettuce Bread MyRobo
put-object Tomato Lettuce MyRobo
put-object Bread Tomato MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

make-salad :=
slice-object Lettuce
slice-object Tomato
put-object Lettuce Bowl MyRobo
put-object Tomato Bowl MyRobo

Δ#

Q-B. Given a change in the afforded task plans, what
changes are necessary in the environment?

AI2THORPDDL

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

3 November 2022A. Aguinaldo 10

Describe a general framework for identifying

(i) what knowledge is necessary given desired capabilities,

(ii) how an agent’s capabilities change when knowledge of the environment changes

(iii) what capabilities an agent has given knowledge of the environment, and

(iv) how knowledge of the environment should change when the desired capabilities
change

in knowledge-based, context-aware autonomous agents.

Objective

Using symmetric delta lenses for the
affordance relation
Method

3 November 2022A. Aguinaldo 11

Language of Scene Graphs

3 November 2022A. Aguinaldo 12

Def. A scene graph, 𝑆, consists of:

i. A schema, or ontology, consisting of classes (𝐶),
primitive types (𝑇), relations (𝑅, 𝑅!) between classes
and types, and inference rules

e.g. person, driving, car ⇒ ¬(person,walking, crosswalk)

ii. A set of object-object relations
(𝑥 ∷ 𝑐", 𝑟, 𝑥# ∷ 𝑐$)

iii. A set of object-attribute relations
𝑥 ∷ 𝑐", 𝑟!, 𝑏 ∷ 𝑡

Categorically, a scene graph can be represented as a co-
presheave (ℂ-Set) where the schema category, ℂ, is the
ontology and the target sets are the specific instances of
each class. The arrows are natural transformations.

https://visualgenome.org/

Scene graphs are a topological representation of objects and their relationships in a scene.

Language of Planning Domains

3 November 2022A. Aguinaldo 13

Def. A planning domain, 𝑃, consists of a set of action
schemas with parameters (parameters), preconditions
(precond), effects (effect).

Preconditions and effects in an action operator consist
of a conjunction of fluents.

A set of action operators can be lifted to be universally
quantified over all variables to form an action schema.
Preconditions and effects in an action operator consist
of a conjunction of literals.

Planning domains are a set of atomic action operators that can be composed to form a
sequence of actions, or task plan.

Categorically, a STRIPS-based planning domain can be
represented as a symmetric monoidal category where
the generating objects are literals, the generating arrows
are action operators, and the tensor product is conjunction.
Positive and negated sentences are considered unique
objects with no relation.
Aguinaldo A., Regli W. Encoding Compositionality in Classical Planning Solutions. IJCAI
Workshop on Generalization in Planning 2021.

(:action pick-up-object
:parameters (?target-obj - Object ?support-obj - Object

?agent - Agent)
:precond (and (not (has ?agent ?target-obj)) (on

?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action pick-up-object
:precond (and (not (has MyRobo Tomato)) (on Tomato

Counter))
:effect (and (has MyRobo Tomato) (not (on Tomato

Counter))))

Affordance relation using functors

3 November 2022A. Aguinaldo 14

Planning Domain

Scene Graph

grounding

Scene Graph

Planning Domain

reverse grounding

(:action pick-up-object
:parameters (?target-obj - Object ?support-

obj - Object)
:precond (on ?target-obj ?support-obj)
:effect(not (on ?target-obj ?support-obj)))

⟼

(:action pick-up-object
:parameters (?target-obj - Object ?support-

obj - Object)
:precond (on ?target-obj ?support-obj)
:effect(not (on ?target-obj ?support-obj)))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

⟼

Showing only object maps

Functor 𝑮 Functor 𝑮’

Change propagation using symmetric delta lens

Def. Symmetric delta lenses
1. Delta lens 𝐺,𝜙 : 𝔸 → 𝔹
2. Delta lens 𝐺’, 𝜙’ : 𝔹 → 𝔸

Axioms
Lifting operations, 𝜙,𝜙′, preserve
compositions and identities

Functors, 𝐺, 𝐺’, are arbitrary
functors

Within each category, (𝔸,𝔹)
• Objects are models
• Arrows, 𝑓, are model updates (deltas)

15

𝔸 ~ category of planning domains
𝔹 ~ category of scene graphs

Johnson 2016

3 November 2022A. Aguinaldo

What kind of queries can we answer?

Queries

3 November 2022A. Aguinaldo 16

Planning Domains

Scene Graph

grounding

Scene Graph

Planning Domains

reverse grounding

i. What is G(𝑎)? “What scene graph is afforded by this planning domain?”
ii. What is 𝜙 %,! ? “Given a change in the scene graph, what changes in the afforded

planning domains?”
iii. What is G′(𝑏′)? “What planning domain is afforded by this scene graph?”
iv. What is 𝜙 ',(!

? “Given a change in the afforded planning domains, what changes
are necessary in the scene graph?”

What kind of queries can we answer?

3 November 2022A. Aguinaldo 17

Planning Domains

Scene Graph

grounding

Scene Graph

Planning Domains

reverse grounding

Queries

i. What is G(𝑎)? “What scene graph is afforded by this planning domain?”
ii. What is 𝜙 %,! ? “Given a change in the scene graph, what changes in the afforded

planning domains?”
iii. What is G′(𝑏′)? “What planning domain is afforded by this scene graph?”
iv. What is 𝜙 ',(!

? “Given a change in the afforded planning domains, what changes
are necessary in the scene graph?”

What kind of queries can we answer?

3 November 2022A. Aguinaldo 18

Planning Domains

Scene Graph

grounding

Scene Graph

Planning Domains

reverse grounding

Queries

i. What is G(𝑎)? “What scene graph is afforded by this planning domain?”
ii. What is 𝜙 %,! ? “Given a change in the scene graph, what changes in the afforded

planning domains?”
iii. What is G′(𝑏′)? “What planning domain is afforded by this scene graph?”
iv. What is 𝜙 ',(!

? “Given a change in the afforded planning domains, what changes
are necessary in the scene graph?”

What kind of queries can we answer?

3 November 2022A. Aguinaldo 19

Planning Domains

Scene Graph

grounding

Scene Graph

Planning Domains

reverse grounding

Queries

i. What is G(𝑎)? “What scene graph is afforded by this planning domain?”
ii. What is 𝜙 %,! ? “Given a change in the scene graph, what changes in the afforded

planning domains?”
iii. What is G′(𝑏′)? “What planning domain is afforded by this scene graph?”
iv. What is 𝜙 ',(!

? “Given a change in the afforded planning domains, what changes
are necessary in the scene graph?”

What kind of queries can we answer?

3 November 2022A. Aguinaldo 20

Planning Domains

Scene Graph

grounding

Scene Graph

Planning Domains

reverse grounding

Queries

i. What is G(𝑎)? “What scene graph is afforded by this planning domain?”
ii. What is 𝜙 %,! ? “Given a change in the scene graph, what changes in the afforded

planning domains?”
iii. What is G′(𝑏′)? “What planning domain is afforded by this scene graph?”
iv. What is 𝜙 ',(!

? “Given a change in the afforded planning domains, what changes
are necessary in the scene graph?”

Ongoing Work
Operationalization and evaluation

3 November 2022A. Aguinaldo 21

Computational categories in development

22

https://github.com/AlgebraicJulia/Catlab.jl

A. Aguinaldo. Using categorical logic for AI planning. 2022. Blogpost: https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/

Features
q C-sets (copresheaves)
q Symmetric monoidal categories
q Categorical database migration
q RDF to C-set serialization
q PDDL to SMC serialization
q Lenses

3 November 2022A. Aguinaldo

In collaboration with Evan Patterson,
James Fairbanks, Owen Lynch, Kris
Brown, Sophie Libkind

https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/

Test and Evaluation Plan
Materials: VEQA dataset (Kim 2020)

- Uses AI2THOR simulator and scene graph generator to generate 3,916 candidate scene
graphs as RDF

§ Contains ~13,000 objects, ~26,000 attributes, ~25,500 relations in total
- Contains 200 action scenarios (task plans) in PDDL syntax

§ Average plan length of 77

Plan for results:
I. Theoretical proof that queries (i) – (iv) are answerable by the framework.
II. Evaluate performance of (a) grounding and (b) reverse grounding method against

ground truth.
III. Evaluate accuracy of query responses of types (i) – (iv) against ground truth.
IV. Evaluate speed of query as scene graphs scale, by (a) number of objects, (b) number

of relations.

3 November 2022A. Aguinaldo 23

Future work: Compositional Affordance
Affordance relations in robotics

(Barck-Holst 2009), (Cruz 2016), (Kruger 2011), (Montesano 2007)

Compositional affordances, hierarchical affordances, “behavior affords behavior”
• Task plans are a composition of action operators
• Objects in the environment are a composition of other objects

- e.g. A sandwich is composition of bread, ham, and cheese

• Little work done to formalize an affordance relation that incorporates composition of
objects and composition of actions (Zech 2017)

3 November 2022A. Aguinaldo 24

Objects in
environment

Actions of
agent∼ e.g. set function map

3 November 2022A. Aguinaldo 25

Thanks for listening!
Please feel free to reach out with questions, suggestions, or related projects.

Angeline Aguinaldo
aaguinal@cs.umd.edu

3 November 2022A. Aguinaldo 26

