
Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Category Theory for Software Modeling and
Design

Angeline Aguinaldo 1, 2

1University of Maryland, College Park

2Johns Hopkins University Applied Physics Laboratory

October 29, 2020

1 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

About Me

Angeline Aguinaldo

University of Maryland, College Park
Computer Science
3rd Year Ph.D. Student

Johns Hopkins University Applied
Physics Laboratory (JHUAPL)

Software Engineer
2017 - Present

Drexel University
B.S. Biomedical Engineering
M.S. Electrical Engineering
Graduated 2017

2 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Measuring Software Design Complexity
Current Approaches

Measuring software design complexity

”People have been programming
computers for more than 80 years
now and yet software design is still
basically a black art”

John Ousterhout

3 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Measuring Software Design Complexity
Current Approaches

Measuring software design complexity

Some research questions:

I How do we know what we have built is unique?

I How do we measure complexity of software design?
I How modular have we made our system?
I Are there opportunities for parallelization?

To start, we need a representation of systems that can support these
questions.

4 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Measuring Software Design Complexity
Current Approaches

Current approaches to modeling software design complexity

I Based on control flow graph. McCabe, T. J., 1976, “A Complexity Measure,”
IEEE Trans. Softw. Eng., 2(4), pp. 308–320.

I Based on function inputs/outputs and lines of source code. Albrecht, A. J.,
and Gaffney, J. E., Jr., 1983, “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation,” IEEE Trans.
Softw. Eng., SE-9(6), pp. 639–648.

I Based on number of operators in source code. Halstead, Maurice H. Elements
of Software Science. New York: Elsevier, 1977. Print.

I UML software architecture notation. J. Rumbaugh, et al, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

5 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Decomposing a Software Problem
Defining Data Models

Decomposing a Software Problem

”Software design involves inventing software concepts to model concepts
in a problem space.”

Jack Reeves, 1992

6 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Decomposing a Software Problem
Defining Data Models

Decomposing a Software Problem

Example Software Project:
“I want to a program that can tell
me how many animals are in this
image”

“Oh, I want it to be able to tell me
what type of animals are in it”

“And I want it to tell me the
location of these animals on Earth”

7 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Decomposing a Software Problem
Defining Data Models

Defining data models and concepts in our software

What’s an image?
Def. An image, i ∈ I , is defined as a N ×M × 3 matrix with matrix
elements, {z | 0 ≥ z ≥ 255 ∈ Z}.

What’s an animal and what data comes with being an animal?
Def. Animal names, N, is a set {”cat”, ”dog”, ”elephant”, ”cow”}.

Def. Locations, L, refers to the set of geographic coordinates
{(x , y) | x ∈ Longitude (Deg), y ∈ Latitude (Deg)}.

Def. Image ID, D, is the set of unique identifier for each image, I .

Def. Animals, A, is the set {(n, l , d) | n ∈ N, l ∈ L, d ∈ D}.

8 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Decomposing a Software Problem
Defining Data Models

Defining data models and concepts in our software
We need a function that will give us a set of images (of animals)
from a source image.
Def. φ : I → I that takes an element from the set of images and returns
a set of images.

9 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Decomposing a Software Problem
Defining Data Models

Defining data models and concepts in our software
We need a function that will translate an image to an animal.
Def. ρ : I → A that maps images to animals.

We might consider ρ as consisting of multiple maps.
ρ1 : I → N ρ2 : I → L ρ3 : I → D

So ρ can be thought of as the product of these maps.

ρ = ρ1 × ρ2 × ρ3

To go from an image to a set of animals, I compose

ρ ◦ φ : I → A

10 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

What is Category Theory?

”Map of Mathematics”, Domain of Science, YouTube

11 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

What is Category Theory?

I Samuel Eilenberg and Saunders Mac Lane introduced the concepts
of categories, functors, and natural transformations from 1942-45 in
their study of algebraic topology.

I Category theory is intended to be a unifying framework to describe
all mathematics, specifically the functions, transforms, or morphisms
that preserve structure.

I Applied category theory is a growing field in which mathematicians
and engineers use concepts from category theory to model structures
found in the real-world. Examples include hetergeneous sensor
fusion1, software design2, biology and music3.

(1) M. M. Kokar, K. Baclawski, and H. Gao, “Category theory-basedsynthesis of a higher-level fusion algorithm: An example,” in2006
9thInternational Conference on Information Fusion, 2006, pp. 1–8
(2) S. P. Kovalyov, “Category-theoretic approach to software systems de-sign,”Journal of Mathematical Sciences, vol. 214, pp. 814–853,
2016.
(3) Wong JY, McDonald J, Taylor-Pinney M, Spivak DI, Kaplan DL, Buehler MJ. Materials by Design: Merging Proteins and Music.
Nano Today. 2012 Dec 1;7(6):488-495. doi: 10.1016/j.nantod.2012.09.001. PMID: 23997808; PMCID: PMC3752788.

12 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

Category
A category C is a class of objects A,B,C , . . . and a sets of morphisms, or arrows,
f , g , For every ordered pair A,B of objects there is a set HomC(A,B) of
morphisms from A to B. These objects and arrows satisfy the following axioms:

I For every object, there exists an identity arrow.

∀A ∈ C, idA : A→ A (1)

I The arrows are composable where the tail of an arrow exactly equals the head of
the previous arrow.

f : A→ B, g : B → C =⇒ g ◦ f : A→ C (2)

I The composition of arrows is associative.

f : A→ B, g : B → C , h : C → D

=⇒ (h ◦ g) ◦ f = h ◦ (g ◦ f)
(3)

I Identity arrows act as a left and right unitor of composition.

f : A→ B =⇒ idB ◦ f = f = f ◦ idA (4)

13 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

Diagrammatic Syntax
Category theory provides a algebraic system for functions and their
compositions.

B

A

f

g

C

g ◦ f g ◦ f

A

C

=

f

A

B

g

C

Conventional syntax for relationships between inputs/outputs and
functions (left). Poincare dual representation, where functions are nodes
and inputs/outputs are arrows (right).

14 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

Symmetric Monoidal Categories

Additional mathematical structure (tensor product ⊗) can be added to
support multiple inputs and multiple outputs. This diagram is often
referred to as a string diagram or wiring diagram.

A B C

D A

A⊗ B ⊗ C

D ⊗ A

=f f

15 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

Symmetric Monoidal Categories
A symmetric monoidal category, M, is a category with:

I A unit object
I ∈ M (5)

I A functor, called the tensor product, which is the product of M with itself

⊗ : M×M→ M (6)

I with the associative isomorphism

aX ,Y ,Z = (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z) (7)

I and a left and right unitor isomorphisms

ρl : I ⊗ X → X ρr : X ⊗ I → X (8)

I and a braiding isomorphism

BX ,Y : X ⊗ Y → Y ⊗ X (9)

I such that the braiding isomorphism obeys the following identity (symmetric)

BY ,X ◦ BX ,Y = IX⊗Y (10)

16 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

Functors

A functor F : X→ Y, where X and Y are categories, maps both

I Objects. An object in X → some object in Y.

I Arrows. Arrow(s) between two objects in X → arrow(s) between
the corresponding objects in Y such that,

F (idX) = idFX (11)

F (g ◦ f) = Fg ◦ Ff (12)

where, f and g are composable arrows in X.

17 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

What is Category Theory?
Definition of a Category
Diagrammatic Syntax
Symmetric Monoidal Categories
Functors
How can these structures help us?

How can these structures help us?

Software Concept Software Questions Mathematical Translation
Modularity “Can I use tool A in place of tool B?” Let C category with objects A, B, C , D and arrows

f : A→ B, g : C → D and h1 : B → C , h2 : B → C .

Does g ◦ h1 ◦ f
?
= g ◦ h2 ◦ f

In other words, are h1 and h2 in Hom(B,C)?
Are these expressions equal up to isomorphism?

Interoperability “Can I pass data from system A to Let s1 : A→ C , s2 : C → E be arrows in C.
system B?” Does s2 ◦ s1 ∈ C?

Performance “Can I run subcomponent A in parallel Let f : A→ B, g : C → D, idA, idB , idC , idD be arrows
with subcomponent B?” in C.

Are the following equivalent up to isomorphism?
(f ⊗ idC) ◦ (idD ⊗ g)
?
= (idA ⊗ idC) ◦ (f ⊗ g) ◦ (idB ⊗ idD)
?
= (idA ⊗ g) ◦ (f ⊗ idD)

18 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Robot Programming and Category Theory

Bloomberg via Getty Images. Robots weld car body components for vehicles at a BMW assembly
plant in Greer, S.C., May 10, 2018.

19 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

RoboCat Framework

Goal-oriented Functional Program

User

writes

Functional Interoperable Compiler

is compiled by

Canonical Robot Command
Language (CRCL)

composes functional program

Robot vendor A Robot vendor N

downward maps to

upward maps to

Same behavior
interoperability

Same program
interoperability

Same program
interoperability

downward maps to

upward maps to

Figure: RoboCat framework consists of a goal-oriented functional programming environment, a
functional interoperable compiler, and the mapping to the Canonical Robot Command Language
(CRCL) and robot-specific APIs

Aguinaldo, B. Pollard, A. Canedo. G. Quiros, W. Regli. “RoboCat: A category theoretic
framework for robotic interoperability using goal-oriented programming.” 2020. In Submission.

20 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Physical Representation, C1

C1 is a symmetric monoidal
category that refers to the physical
representation of the world. This
consists of objects, S1 = {Door,
Gripper, ...}. The arrows are the
set of all possible commands that
would enlist these two resources.

OpenDoorUsingGripper

Door Gripper

GripperDoor

(13)

21 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Software Representation, C2

C2 is a symmetric monoidal category
that refers to the informational or
virtual resources. This consists of
objects, S2 = {Door, Gripper} and
arrows where each arrow represents
the skills needed to complete the
desired action.

OpenDoor

MoveToDoor

MoveHome

GripperDoor

GripperDoor

(14)

22 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Software Representation, C2

OpenDoor

Door Gripper

Door Gripper

= MoveToOpen

Door Gripper

AttachToDoor

ReleaseDoor

Door Gripper

(15)

In C2, we can define relations that encode semantic equivalences between
skills and composition of skills.

23 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Robot Commands, C3

<CRCLCommand xsi:type="MoveToType">

<MoveStraight >true</MoveStraight >

<EndPosition >

<Point>

<X>8.25</X> <Y>1</Y> <Z>0.5</Z>

</Point >

<XAxis>

<I>1</I> <J>0</J> <K>0</K>

</XAxis >

<ZAxis>

<I>0</I> <J>0</J> <K>-1</K>

</ZAxis >

</EndPosition >

</CRCLCommand >

<CRCLCommand

xsi:type="SetEndEffectorParametersType">

<ParameterSetting >

<ParameterName >mode</ParameterName >

<ParameterValue >grip</ParameterValue >

</ParameterSetting >

</CRCLCommand >

<CRCLCommand xsi:type="SetEndEffectorType">

<Setting >1.0</Setting >

</CRCLCommand >

MoveToType(...)

SetEndEffectorParameterType(...)

R

R

R

R

SetEndEffectorType(...)

R

R

(16)

C3 is a symmetric monoidal category that refers to the category of CRCL commands.
This is a category with one object per robot platform, R ∈ S3, and arrows where
arrows are fully parameterized CRCL commands.

24 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Functors

By designing the functions and their interfaces (i.e. categories) first, we
have isolated the parts of the code that will be responsible for handling
variations needed for interoperability, i.e. the functors F and G .

F : C1 → C2. This is the human-performed task of developing a 3D
model of the physical environment.

G : C2 → C3. This maps

I Objects. Software objects to robot platforms

I Arrows. Follow Table 1 (next slide)

25 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Functor G

C2 Arrow C3 Arrow Pseudocode
MoveToDoor MoveTo(...) let pose = GetGripperNaturalPose(Gripper)

let position = GetDoorHandlePosition(Door)

BuildMoveToCRCL(pose, position)

MoveToOpen MoveTo(...) let pose = GetGripperCurrentPose(Gripper)

let position = GetDoorOpenPosition(Door)

BuildMoveToCRCL(pose, position)

MoveHome MoveTo(...) let pose = GetGripperNaturalPose(Gripper)

let position = GetGripperHomePosition(Door)

BuildMoveToCRCL(pose, position)

AttachToDoor SetEndEffector(...) ◦ let endEffectorMode = GetGripperAttachMode(Gripper)

SetEndEffectorParameter(...) BuildSetEndEffectorParameterCRCL(endEffectorMode)

let endEffectorSetting = GetGripperAttachSetting(Gripper)

BuildSetEndEffectorCRCL(endEffectorSetting)

ReleaseDoor SetEndEffector(...) ◦ let endEffectorMode = GetGripperAttachMode(Gripper)

SetEndEffectorParameter(...) BuildSetEndEffectorParameterCRCL(endEffectorMode)

let endEffectorSetting = GetGripperReleaseSetting(Gripper)

BuildSetEndEffectorCRCL(endEffectorSetting)

Table: Functor G that maps objects and arrows in C2 to those in C3

26 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Full Model

OpenDoorUsingGripper

Door Gripper

GripperDoor

MoveToDoor

MoveHome

GripperDoor

GripperDoor

MoveToOpen

AttachToDoor

ReleaseDoor

MoveToType(...)

R

SetEndEffectorParameterType(...)

SetEndEffectorParameterType(...)

R

MoveToType(...)

MoveToType(...)

GF

∈ C1 ∈ C3∈ C2

(17)

Full example of string diagram for the robot program: open door using
gripper

27 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

String Diagrams for Resource Tracking

String diagrams are useful for resource tracking at any ”slice” or time
resolution

OpenDoorUsingGripper

Door Gripper

GripperDoor

(idd ⊗ idg) ◦ p ◦ (idd ⊗ idg)

t expression shorthand
1 Door ⊗ Gripper D ⊗ G
2 OpenDoorUsingGripper p
3 Door ⊗ Gripper idd⊗ idg

Table: Linear syntax representation

28 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Benefits of Category Theoretic Representation

This method provides:

I a systematic way to compartmentalize the translation from
physical objects to programming language syntax, and then, to
robot command APIs in your robot program

I an algebra of functions that produce rigorous program

I a system for tracking semantic relationships

29 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

RoboCat
Example: Open door using gripper
Benefits of Category Theory Representation
Future Work

Future Work for Robotic Programming

Explore advantages of symmetric monoidal category structure as a
representation for robot programs

I Metrics that characterize the level of interoperability or similarity
between robot program definitions via pattern matching on linear
expressions

I Validation model for detecting failure during execution time,
leveraging
I Precise expression of temporal resource utilization
I Strictly functional paradigm

I Exploit sliding and concatenating of string diagrams to produce
optimized process plans for single and multi-agent workcells

30 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Resources
Acknowledgements

Resources for Applied Category Theory
Tool Support

I Catlab (applied category theory computer algebra library)

I idris-ct (verified category theory library)

Blogs

I GraphicalLinearAlgebra (Blog about string diagram algebra. Very gentle and casual
expositions.)

I John Baez (Physics-focused applications of category theory. Math heavy but includes
motivational text.)

I Bartosz Milewski (Introduction to Haskell through category theory)

Texts

I Eilenberg, S., & MacLane, S. (1945). General Theory of Natural Equivalences. Transactions
of the American Mathematical Society, 58(2), 231-294. doi:10.2307/1990284

I Lawvere, F., & Schanuel, S. (2009). Conceptual Mathematics: A First Introduction to
Categories (2nd ed.). Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511804199

I Fong, B., Spivak, D.I. (2018). Seven Sketches in Compositionality: An Invitation to
Applied Category Theory. arXiv: Category Theory. https://arxiv.org/pdf/1803.05316.pdf

I Eugenia Cheng. How to Bake Pi: An Edible Exploration of the Mathematics of
Mathematics. 2015. Basic Books.

31 / 33

https://github.com/AlgebraicJulia/Catlab.jl
https://github.com/statebox/idris-ct
https://graphicallinearalgebra.net/
https://johncarlosbaez.wordpress.com/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Resources
Acknowledgements

Acknowledgements

I Spencer Breiner (NIST)

I Eswaran Subrahmanian (NIST)

I Fred Proctor (NIST)

I Patrick Eisen (Siemens)

I Christof Budnik (Siemens)

I John Nolan (UMD)

I John Kanu (UMD)

I Mukulika Ghosh (UMD)

This work was funded by
Advanced Robotics for
Manufacturing (ARM).

32 / 33

Introduction
My Research Interests

Software Design
Category Theory

Applications: Robot Programming
Conclusion

Resources
Acknowledgements

Feel free to reach out to me with questions or interest.

Angeline Aguinaldo
aaguinal@cs.umd.edu

33 / 33

	Introduction
	My Research Interests
	Measuring Software Design Complexity
	Current Approaches

	Software Design
	Decomposing a Software Problem
	Defining Data Models

	Category Theory
	What is Category Theory?
	Definition of a Category
	Diagrammatic Syntax
	Symmetric Monoidal Categories
	Functors
	How can these structures help us?

	Applications: Robot Programming
	RoboCat
	Example: Open door using gripper
	Benefits of Category Theory Representation
	Future Work

	Conclusion
	Resources
	Acknowledgements

