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Planning in robotics

Task Planning

Aguinaldo A., Bunker J., Pollard B., Shukla A., Canedo A., Quiros G., Regli W. RoboCat: A Category
Theoretic Framework for Robotic Interoperability Using Goal-Oriented Programming. IEEE
Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2021.3094055.

Video by Jacob Bunker

Motion Planning
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Task planning in robotics
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@4{ open-object )—@
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@4( close-object )—»@
@4( slice-object )—»@
@4{ pick-up-object }—»@
@4( ut-object )—@

ACTIONS

Initial State: There are sandwich
ingredients on the countertop

put-object
—

pick-up-object
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Goal State: There is a tomato and
lettuce sandwich on the countertop

PLANNER



Task planning in robotics

Initial State: There are sandwich
ingredients on the countertop
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How do we represent the world?
How do we represent actions?
How do we represent how actions update the world?
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Goal State: There is a tomato and
lettuce sandwich on the countertop
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Classical approaches to planning

Transferring actions

Handling complex world between domains

states

on
A
A
A
A
A
A

(apple, countertop)
not(has(robot, apple))
on(knife, countertop)
not(has(robot, knife))
on(tomato, countertop)
not_sliced(tomato))
not(has(robot, tomato))

(:action slice-object

:parameters (?obj -
Object)

:precond (not_sliced
?0bj))

reffect (and (sliced ?obj)
(not (not_sliced ?o0bj)))

Managing implicit
effects

(:action slice-object
:parameters (bread - Object)
:precond (not_sliced bread))
reffect (and (sliced bread)

(not (not_sliced bread)))
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Modern approaches to planning

Transferring actions
Handling complex world between domains Managing implicit

states effects

method travel-by-foot
precond:  distance{x,y) <2 (s requize
task:  travel(o, x, {) ‘predica P 2 29) 5 basic prasicat
2 ve 2

es
y) (clear ?x) (handempty)) ;

subtasks: wolk(a, x,

method travel-by-taxi (rderived (hording
tosk:  frovel(g, x, )
precond: cashla) = 1.5 + 0.5 x distance(x, y)
subtasks: call-foxi(g, x) — ride(a, x, y) — pay-driver(q, x, y)

z) (and (on ?x ?2) (above 2z ?y)))))

(:derived (clear ?x)
operator walk (g, x, y) (and (ot (holding 7x))
precond: location{a) = x (not (exists (3y) (on 7y 7))
effeds: Iowiion(a)% Yy (:derived (handempty) (forall (?x) (not (holding ?x))))

aperator call-taxi(a, x)
effects:  location{faxi) < x

: nd (clear ?ob) (on-table ?ob) (handempty))
:effect (not (on-table ?0b)))

on(apple, countertop)

A not(has(robot, apple)) +

A on(knife, countertop)
A not(has(robot, knife))




My research contributions

Transferring actions Managing implicit
between domains effects

Handling complex world
states
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PLANNER

Aguinaldo A., Patterson E., Fairbanks J., Ruiz J. (2023). A
Categorical Representation Language and Computational
System for Knowledge-Based Planning. In review.
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Our scene graph

[(tomato::Tomato)] [(bread::Bread)] (lettuce::Lettuce)

on
on on

[(countertop::SupportSurface) ]%

(/ o [ (stool::SittingSurface) ]

[(knife::Knife)] [(bowl::Bowl)]

Scene graph as a typed graph




Our scene graph

SupportSurface W‘

on SittingSurface

Knife Bowl

{tomato} {bread} {lettuce}

{countertop} \
/\ {stool}

{knife} {bowl}

Every typed graph is a C-set Brown2021




Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { i}
stoo
/

on SittingSurface {knife} {bowl}

Knife Bowl

Syntax, C Semantics, Set




Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

Tomato | Ryraad l Lottuuco \ / /

A category, C, consists of:
N * acollection of objects, 0b(C)

* acollection of morphisms for every pairs of objects, Hom (x,y) forx,y € C ~—_
SUppq .« acomposition operation, if f:x = y,g:y = zthengo fix — z
« anidentity morphism for every object, 1,:x - x {stool}
V on\ SittingSurface {kn’ife} b c;wl}
Knife Bowl

Syntax, C Semantics, Set




Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { i}
stoo
/

on SittingSurface {knife} {bowl}

Knife Bowl

Syntax, C Semantics, Set




Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { 3
stoo
/

on SittingSurface } {knife} {bowl}

Knife Bowl

Patterson, E., Lynch, O., & Fairbanks, J. (2021).

Syntax, C X: C — Set (functor) SEMANtICS, SEt oty Compononcity A0, may




Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}
Tomato | Braad | Lattiuca ~ 4 =

A functor, F: C — D, from a category C to a category D:
N * amap between objects F: 0b(C) — 0b(D)

* amap between homomorphism sets F: Hom(x,y) - Homp(F(x), F(y))

Suppc

o

such that {stool}
V F(gof)=F(g)oF(f)forfix >yandg:y = zinC

F(1,) = 1p(,) foreveryx € C
Knife Bowl

Patterson, E., Lynch, O., & Fairbanks, J. (2021).
SyntaX, C X: C - Set (functo r) Sema ntiCS, Set Categorical Data Structures for Technical

Computing. Compositionality, 4(5), 1-27.




Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { 3
stoo
/

on SittingSurface } {knife} {bowl}

Knife Bowl

Patterson, E., Lynch, O., & Fairbanks, J. (2021).

Syntax, C X: C — Set (functor) SEMANtICS, SEt oty Compononcity A0, may




C-Sets

A category of C-set functors

X Y
{slicey, slice;}
BreadSlices
-~ {tomato} {bread} {lettuce} partof
[Tomato ] [ Bread ] Lettuce \% - {tomato} {bread} {lettuce}
on on [Tomato ] [ Bread ] Lettuce \%
on {countertop} a
SupportSurface behind — {countertop} \
/\ {stool} [ SupportSurface behind
/ \ SlttlngSurface 4 {stool}
{knife} {bowl} SlttlngSurface \
Kmfe ] [ Bowl {knlfe} {bowl}
Kmfe

Finding an assignment can be formulated as a typed CSP (only consider assignment that satisfies type relations).
The typed CSP search space grows by O(n*) where n is the size of the target (Y) and k is the size of the source (X).
For reference, a generic graph homomorphism matching problem is NP-complete.

Brown, K., Patterson, E., & Hanks, T. (2022).

A tra nSfOFmation, CZ, between X and Y |S d typed CSP SOlUtIOﬂ if it iS natu ral. Computational Category-Theoretic Rewriting

(Vol. 1). Springer International Publishing.
CSP: constraint satisfaction problem https://doi.org/10.1007/978-3-031-09843-7



Double-pushout (DPO) rewriting

{bread}

Applicability is determined by a

monomorphism, [ = X
e.g. Amonomorphism in Setis an injective function

{tomato} {bread} {lettuce}

Lettuce

Tomato
on

) {countertop}
SupportSurface behind \
{stool}
SittingSurface ‘

{knife} {bowl}

P~

{bread}

K

o<

Z

{tomato} {bread} {lettuce}

Lettuce

{countertop}

ehind

SittingSurface

{stool}

ol
SupportSurface
on

{knife} {bowl}

{slicey, slice,}
BreadSlices

partOf

e}

{bread}

DPO rewrite rule (action)

World state

{slicey, slice;}
BreadSlices -

- -~ {tomato} {bread} {lettuce}
“| Lettuce ) \ %
on, {countertop}

{stool}

SupportSurface behind /\
SittingSurface . >

{knife} {bowl}




Forward planning algorithm with DPO

Algorithm: Forward Planning with Backtracking

Procedure: ForwardPlan(Y world, G goal, r rules, r_usage

= ek rule usage, r_limits rule limits, p plan)
ﬂ [ J Vo amplicanle rules: 1. (Exit criteria) If monomorphism G © Y exists
77—y "+ K" — 0" . la Retu".] Plan . .
P J J Vo amplicanle rules: 2. Initialize a.lppllcable rules list, applicable
e o e gt o oS 3.Forruleinrdo
- — 3a. Get the input object of rule,
flj ’ J L S 3b. Check if monomorphismr; & Y exists
ey e e K O Rute i reached: 3c. If exists, append rule to applicable
\ 4. (Backtrack criteria) If applicable is empty, “No applicable
e K=o rules!” ThrowException
\ J J 5.Forainapplicable do
A [ K == 0" 5a. (Backtrack criteria) If r_usage[al >=r_limits[al,
N | l / [ “Rule limit reached!” continue
e e e 5b. Y =DPO(Y, representable(a))

5c. Appendatop
5d. ForwardPlan(Y, G, r, r_usage, r_limits, p)

A. Aguinaldo. "Using categorical logic for Al planning”. AlgebraicJulia Blog [https://blog.algebraicjulia.org/post/2022/09/ai-planning-cset/]. 2022


https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/

Future Work

* Implement a planning package within the
AlgebraicJulia ecosystem
* Leverage the C-set structure and DPO
rewriting procedure developed in

Catlab.jl
Algebraiclulia/ :::
Catlab.jl
A framework for applied category theory in the Julia
language
AL 26 ® 129 L5%)] 1‘ ¢ 513 Y 49 Q

Contributors Issues Discussion Stars Forks

* Implement existing planning algorithms and
compare plan qualities

I. Analogies in planning

Abstracts all domains to a topological setting
which allows for transfer of actions between
domains that are isomorphic to rewrite rules

Il. Online planning

Abstracts world state updates to a common
language that can be expressed by an Al
planner, a human, or a machine

Ill. Scene affordance relations
All applicable actions can be thought of as
actions afforded by the scene



Thank you for listening!

Summary

» Explained a toy planning example for how to make a tomato and lettuce
sandwich

* Explored the applications of C-sets and DPO rewriting as the basis of a scene
graph planning framework

* Touched on future work regarding analogies in planning, online planning, and
scene affordance relations




Double-pushout (DPO) rewriting

)

& ®)
I ‘ ﬁK : 0

Applicability is determined by a

) , DPO rewrite rule (action)
monic transformation, I — X

e.g. Amonomorphism in Set is an injective function l J' World state




Merging and gluing operations

:close_sandwich=> @migration(SchDB,

{tomatoslice}  {slice0, slicel} {leaf} I => @join begin
sandwich: :Sandwich
slicel::BreadSlice

{Fo, F1, Fz,Fg*\ {sandwich} end
[e—— Sandwich / \ K == @join begin

{tomatO} {bread} {lettUCE} sandwich: :Sandwich

Bread Lettuce \% slicel::BreadSlice
on end

o {cou ntertop}

SupportSurface behind 0 => @join begin
{5t°°l} sandwich::Sandwich
SlttlngSurface ] ' '

slicel::BreadSlice
{knife} {bowl} sandwich _is food(sandwich) ==

l Knife | | Bowl I \ / breadsliEe__is_food(slicel)
end
{uy, uy}

Utensil

BreadSlice Lettucel eaf

TomatoSlice

on

Syntax provided by Catlab.jl

A conjunctive (merging) operation is a limit in the category of representable functors.
A gluing operation is a colimit in the category of representable functors.




