A Category Theoretic
Approach to Planningin a
Complex World

Angeline Aguinaldo
University of Maryland, College Park
Johns Hopkins University Applied Physics Laboratory

Microsoft Future Leaders in Robotics and Al Seminar Series
April 7,2023

Planning in robotics

Task Planning

Aguinaldo A., Bunker J., Pollard B., Shukla A., Canedo A., Quiros G., Regli W. RoboCat: A Category
Theoretic Framework for Robotic Interoperability Using Goal-Oriented Programming. IEEE
Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2021.3094055.

Video by Jacob Bunker

Motion Planning

11

TN
S5 bt % Siiteees
SO
& J%H
= G

141
L

e

—tt
- 7 5
7

:z21

Task planning in robotics

4 I g []
R AL

@4{ open-object)—@
I

@4(close-object)—»@
@4(slice-object)—»@
@4{ pick-up-object }—»@
@4(ut-object)—@

ACTIONS

Initial State: There are sandwich
ingredients on the countertop

put-object
—

pick-up-object

— e o T . O o T o

Goal State: There is a tomato and
lettuce sandwich on the countertop

PLANNER

Task planning in robotics

Initial State: There are sandwich
ingredients on the countertop

‘ - [
f@"’\ 0) b i@\ - { () = = = = — — \
W pen-object)—» 9
‘ ! 7

slice-object
u N | <

o

—— —

How do we represent the world?
How do we represent actions?
How do we represent how actions update the world?

I Y

3 @ I put—gbject
{a;‘ put-object e = J
N>

Goal State: There is a tomato and
lettuce sandwich on the countertop

WORLD ACTIONS PLANNER

Classical approaches to planning

Transferring actions

Handling complex world between domains

states

on
A
A
A
A
A
A

(apple, countertop)
not(has(robot, apple))
on(knife, countertop)
not(has(robot, knife))
on(tomato, countertop)
not_sliced(tomato))
not(has(robot, tomato))

(:action slice-object

:parameters (?obj -
Object)

:precond (not_sliced
?0bj))

reffect (and (sliced ?obj)
(not (not_sliced ?o0bj)))

Managing implicit
effects

(:action slice-object
:parameters (bread - Object)
:precond (not_sliced bread))
reffect (and (sliced bread)

(not (not_sliced bread)))

S

Modern approaches to planning

Transferring actions
Handling complex world between domains Managing implicit

states effects

method travel-by-foot
precond: distance{x,y) <2 (s requize
task: travel(o, x, {) ‘predica P 2 29) 5 basic prasicat
2 ve 2

es
y) (clear ?x) (handempty)) ;

subtasks: wolk(a, x,

method travel-by-taxi (rderived (hording
tosk: frovel(g, x,)
precond: cashla) = 1.5 + 0.5 x distance(x, y)
subtasks: call-foxi(g, x) — ride(a, x, y) — pay-driver(q, x, y)

z) (and (on ?x ?2) (above 2z ?y)))))

(:derived (clear ?x)
operator walk (g, x, y) (and (ot (holding 7x))
precond: location{a) = x (not (exists (3y) (on 7y 7))
effeds: Iowiion(a)% Yy (:derived (handempty) (forall (?x) (not (holding ?x))))

aperator call-taxi(a, x)
effects: location{faxi) < x

: nd (clear ?ob) (on-table ?ob) (handempty))
:effect (not (on-table ?0b)))

on(apple, countertop)

A not(has(robot, apple)) +

A on(knife, countertop)
A not(has(robot, knife))

My research contributions

Transferring actions Managing implicit
between domains effects

Handling complex world
states

~ I °K 0
[
X Z Y

PLANNER

Aguinaldo A., Patterson E., Fairbanks J., Ruiz J. (2023). A
Categorical Representation Language and Computational
System for Knowledge-Based Planning. In review.

Approach

Our scene graph

[(tomato::Tomato)] [(bread::Bread)] (lettuce::Lettuce)

on
on on

[(countertop::SupportSurface)]%

(/ o [(stool::SittingSurface)]

[(knife::Knife)] [(bowl::Bowl)]

Scene graph as a typed graph

Our scene graph

SupportSurface W‘

on SittingSurface

Knife Bowl

{tomato} {bread} {lettuce}

{countertop} \
/\ {stool}

{knife} {bowl}

Every typed graph is a C-set Brown2021

Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { i}
stoo
/

on SittingSurface {knife} {bowl}

Knife Bowl

Syntax, C Semantics, Set

Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

Tomato | Ryraad l Lottuuco \ / /

A category, C, consists of:
N * acollection of objects, 0b(C)

* acollection of morphisms for every pairs of objects, Hom (x,y) forx,y € C ~—_
SUppq .« acomposition operation, if f:x = y,g:y = zthengo fix — z
« anidentity morphism for every object, 1,:x - x {stool}
V on\ SittingSurface {kn’ife} b c;wl}
Knife Bowl

Syntax, C Semantics, Set

Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { i}
stoo
/

on SittingSurface {knife} {bowl}

Knife Bowl

Syntax, C Semantics, Set

Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { 3
stoo
/

on SittingSurface } {knife} {bowl}

Knife Bowl

Patterson, E., Lynch, O., & Fairbanks, J. (2021).

Syntax, C X: C — Set (functor) SEMANtICS, SEt oty Compononcity A0, may

Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}
Tomato | Braad | Lattiuca ~ 4 =

A functor, F: C — D, from a category C to a category D:
N * amap between objects F: 0b(C) — 0b(D)

* amap between homomorphism sets F: Hom(x,y) - Homp(F(x), F(y))

Suppc

o

such that {stool}
V F(gof)=F(g)oF(f)forfix >yandg:y = zinC

F(1,) = 1p(,) foreveryx € C
Knife Bowl

Patterson, E., Lynch, O., & Fairbanks, J. (2021).
SyntaX, C X: C - Set (functo r) Sema ntiCS, Set Categorical Data Structures for Technical

Computing. Compositionality, 4(5), 1-27.

Functorial semantics

Separate but synchronized syntax and semantics

{tomato} {bread} {lettuce}

{countertop} \
SupportSurface ’W‘ /\ { 3
stoo
/

on SittingSurface } {knife} {bowl}

Knife Bowl

Patterson, E., Lynch, O., & Fairbanks, J. (2021).

Syntax, C X: C — Set (functor) SEMANtICS, SEt oty Compononcity A0, may

C-Sets

A category of C-set functors

X Y
{slicey, slice;}
BreadSlices
-~ {tomato} {bread} {lettuce} partof
[Tomato] [Bread] Lettuce \% - {tomato} {bread} {lettuce}
on on [Tomato] [Bread] Lettuce \%
on {countertop} a
SupportSurface behind — {countertop} \
/\ {stool} [SupportSurface behind
/ \ SlttlngSurface 4 {stool}
{knife} {bowl} SlttlngSurface \
Kmfe] [Bowl {knlfe} {bowl}
Kmfe

Finding an assignment can be formulated as a typed CSP (only consider assignment that satisfies type relations).
The typed CSP search space grows by O(n*) where n is the size of the target (Y) and k is the size of the source (X).
For reference, a generic graph homomorphism matching problem is NP-complete.

Brown, K., Patterson, E., & Hanks, T. (2022).

A tra nSfOFmation, CZ, between X and Y |S d typed CSP SOlUtIOﬂ if it iS natu ral. Computational Category-Theoretic Rewriting

(Vol. 1). Springer International Publishing.
CSP: constraint satisfaction problem https://doi.org/10.1007/978-3-031-09843-7

Double-pushout (DPO) rewriting

{bread}

Applicability is determined by a

monomorphism, [= X
e.g. Amonomorphism in Setis an injective function

{tomato} {bread} {lettuce}

Lettuce

Tomato
on

) {countertop}
SupportSurface behind \
{stool}
SittingSurface ‘

{knife} {bowl}

P~

{bread}

K

o<

Z

{tomato} {bread} {lettuce}

Lettuce

{countertop}

ehind

SittingSurface

{stool}

ol
SupportSurface
on

{knife} {bowl}

{slicey, slice,}
BreadSlices

partOf

e}

{bread}

DPO rewrite rule (action)

World state

{slicey, slice;}
BreadSlices -

- -~ {tomato} {bread} {lettuce}
“| Lettuce) \ %
on, {countertop}

{stool}

SupportSurface behind /\
SittingSurface . >

{knife} {bowl}

Forward planning algorithm with DPO

Algorithm: Forward Planning with Backtracking

Procedure: ForwardPlan(Y world, G goal, r rules, r_usage

= ek rule usage, r_limits rule limits, p plan)
ﬂ [J Vo amplicanle rules: 1. (Exit criteria) If monomorphism G © Y exists
77—y "+ K" — 0" . la Retu".] Plan . .
P J J Vo amplicanle rules: 2. Initialize a.lppllcable rules list, applicable
e o e gt o oS 3.Forruleinrdo
- — 3a. Get the input object of rule,
flj ’ J L S 3b. Check if monomorphismr; & Y exists
ey e e K O Rute i reached: 3c. If exists, append rule to applicable
\ 4. (Backtrack criteria) If applicable is empty, “No applicable
e K=o rules!” ThrowException
\ J J 5.Forainapplicable do
A [K == 0" 5a. (Backtrack criteria) If r_usage[al >=r_limits[al,
N | l / [“Rule limit reached!” continue
e e e 5b. Y =DPO(Y, representable(a))

5c. Appendatop
5d. ForwardPlan(Y, G, r, r_usage, r_limits, p)

A. Aguinaldo. "Using categorical logic for Al planning”. AlgebraicJulia Blog [https://blog.algebraicjulia.org/post/2022/09/ai-planning-cset/]. 2022

https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/

Future Work

* Implement a planning package within the
AlgebraicJulia ecosystem
* Leverage the C-set structure and DPO
rewriting procedure developed in

Catlab.jl
Algebraiclulia/ :::
Catlab.jl
A framework for applied category theory in the Julia
language
AL 26 ® 129 L5%)] 1‘ ¢ 513 Y 49 Q

Contributors Issues Discussion Stars Forks

* Implement existing planning algorithms and
compare plan qualities

I. Analogies in planning

Abstracts all domains to a topological setting
which allows for transfer of actions between
domains that are isomorphic to rewrite rules

Il. Online planning

Abstracts world state updates to a common
language that can be expressed by an Al
planner, a human, or a machine

Ill. Scene affordance relations
All applicable actions can be thought of as
actions afforded by the scene

Thank you for listening!

Summary

» Explained a toy planning example for how to make a tomato and lettuce
sandwich

* Explored the applications of C-sets and DPO rewriting as the basis of a scene
graph planning framework

* Touched on future work regarding analogies in planning, online planning, and
scene affordance relations

Double-pushout (DPO) rewriting

)

& ®)
I ‘ ﬁK : 0

Applicability is determined by a

) , DPO rewrite rule (action)
monic transformation, I — X

e.g. Amonomorphism in Set is an injective function l J' World state

Merging and gluing operations

:close_sandwich=> @migration(SchDB,

{tomatoslice} {slice0, slicel} {leaf} I => @join begin
sandwich: :Sandwich
slicel::BreadSlice

{Fo, F1, Fz,Fg*\ {sandwich} end
[e—— Sandwich / \ K == @join begin

{tomatO} {bread} {lettUCE} sandwich: :Sandwich

Bread Lettuce \% slicel::BreadSlice
on end

o {cou ntertop}

SupportSurface behind 0 => @join begin
{5t°°l} sandwich::Sandwich
SlttlngSurface] ' '

slicel::BreadSlice
{knife} {bowl} sandwich _is food(sandwich) ==

l Knife | | Bowl I \ / breadsliEe__is_food(slicel)
end
{uy, uy}

Utensil

BreadSlice Lettucel eaf

TomatoSlice

on

Syntax provided by Catlab.jl

A conjunctive (merging) operation is a limit in the category of representable functors.
A gluing operation is a colimit in the category of representable functors.

