
11100 Johns Hopkins Road
Laurel, MD 20723-6099

1

Contextual affordances in context-
aware autonomous systems
Angeline Aguinaldo

Research Software Engineer, Johns Hopkins University Applied Physics Laboratory
angeline.aguinaldo@jhuapl.edu

Computer Science PhD Student, University of Maryland College Park
aaguinal@cs.umd.edu

AMS Joint Mathematics Meeting: Applied Category Theory Special Session
Boston, MA
January 2023

mailto:angeline.aguinaldo@jhuapl.edu
mailto:aaguinal@cs.umd.edu

Contents

3 November 2022A. Aguinaldo 2

1. Motivating example
2. Using symmetric delta lenses for the affordance relation

- What are the structures?
- What kind of queries can we answer?

3. Ongoing work
- Developing a categorical database using AlgebraicJulia
- Future work

Technical Roadmap

3 November 2022A. Aguinaldo 3

Vision-based
Task Planning

Search and
Rescue Mission

Planning

Knowledge-based Planning

Expressing
concurrent

actions

Enabling
online

planning

Using analogies
in planning

Inferring
scene-level
affordances

Symmetric
Monoidal
Category

Graph
Processes C-Sets

DPO rewrite
rules

Symmetric
Delta Lens

Applications

Domains and
Subdomains

Open problems

Methods

Affordances in robotics

Knowledge RepresentationAutomated Planning

Embodied Non-embodied

Technical Roadmap

3 November 2022A. Aguinaldo 4

Vision-based
Task Planning

Search and
Rescue Mission

Planning

Knowledge-based Planning

Expressing
concurrent

actions

Enabling
online

planning

Using analogies
in planning

Inferring
scene-level
affordances

Symmetric
Monoidal
Category

Graph
Processes C-Sets

DPO rewrite
rules

Symmetric
Delta Lens

Applications

Domains and
Subdomains

Open problems

Methods

Affordances in robotics

Knowledge RepresentationAutomated Planning

Embodied Non-embodied

Scene-level affordances in robotics

73 November 2022A. Aguinaldo

Mug vs. Mug with coffee on desk

High-level actions often depend on scene-level arrangements, as opposed to, object-level features.
There is little to no work done towards inferring scene-level affordances. [Lüddecke 2016]

https://bootcamp.uxdesign.cc/what-every-game-ux-designer-should-
know-about-human-psychology-9f0a325e919e

Object-level Scene-level

Drink coffee

Motivating Example: Kitchen World

3 November 2022A. Aguinaldo 8

Actions Scenes Scene Graph

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

Afforded Actions

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

Motivating Example: Kitchen World

3 November 2022A. Aguinaldo 9

Actions Scenes Scene Graph

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

Afforded Actions

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

True

False

is sliced

is sliced

Motivating Example: Kitchen World

3 November 2022

A. Aguinaldo 11

Actions Scenes Initial Scene Graph Afforded Actions

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

Δ!

AI2THORPDDL

(:action open-object
:parameters (?obj - Object)
:precond (not (openness ?obj))
:effect (openness ?obj))

(:action close-object
:parameters (?obj - Object)
:precond (openness ?obj)
:effect (not (openness ?obj)))

(:action cook-object
:parameters (?obj - Object)
:precond (not (cooked ?obj))
:effect (cooked ?obj))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action put-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj)))
:effect (and (on ?target-obj ?support-

obj) (not (has ?agent ?target-obj))))

Knife Tomato Lettuce Bowl

Countertop

Stool

on
on on on

behind of in front of

Bread
on

True

False

is sliced

is sliced

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object ?agent - Agent)
:precond (and (not (has ?agent ?target-

obj)) (on ?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

Δ"

3 November 2022

Using symmetric delta lenses for the
affordance relation
Method

3 November 2022A. Aguinaldo 14

Language of Scene Graphs

3 November 2022A. Aguinaldo 15

Def. A scene graph, 𝑆, consists of:

i. A schema, or ontology, consisting of classes (𝐶),
primitive types (𝑇), relations (𝑅, 𝑅!) between classes
and types, and inference rules

e.g. person, driving, car ⇒ ¬(person,walking, crosswalk)

ii. A set of object-object relations
(𝑥 ∷ 𝑐", 𝑟, 𝑥# ∷ 𝑐$)

iii. A set of object-attribute relations
𝑥 ∷ 𝑐", 𝑟!, 𝑏 ∷ 𝑡

Categorically, a scene graph can be represented as a co-
presheave (ℂ-Set) where the schema category, ℂ, is the
ontology and the target sets are the specific instances of
each class. The arrows are natural transformations.

https://visualgenome.org/

Scene graphs are a topological representation of objects and their relationships in a scene.

ℂ − 𝐒𝐞𝐭 and Attributed ℂ − 𝐒𝐞𝐭
Def. A (finite) ℂ − 𝐒𝐞𝐭 is a functor from ℂ → FinSet.
For computable examples, we assume finitely presented
categories.

Def. A (finite) attribute ℂ − 𝐒𝐞𝐭 is a functor, 𝐹, from a
finitely presented schema category, ℂ, to Set, where ℂ is
partitioned using a map 𝑆: ℂ → 𝟐.
The preimage 𝑆%"(0) isolates the combinatorial structure.
The preimage 𝑆%"(1) isolates the attribute structure.
The preimage 𝑆%"(0 → 1) isolates the arrows between the
combinatorial structure and the attribute structure.

Note: The Grothendieck construction, ∫𝐹, translates to
RDF triples, e.g.

(Tomato :: Object, fon :: on, Counter :: Object)
(Tomato :: Object, fsliced1 :: sliced, True :: Bool)

3 November 2022A. Aguinaldo 16

Patterson, E., Lynch, O., & Fairbanks, J. (2021). Categorical Data Structures for Technical Computing. 4(5), 1–27. http://arxiv.org/abs/2106.04703

Bool

on

sliced sliced

{Tomato, Bread}

{True, False}

{Counter}

{True, False}

Set

ℂ

𝑓&'()*+! 𝑓&'()*+"

𝑓,-

Object

Bool

Object

𝐹: ℂ → Set

Map between ℂ − 𝐒𝐞𝐭s

3 November 2022A. Aguinaldo 17

on

{Tomato, Bread} {Counter}

ℂ

𝑓,-

Object Object

Bool

on

sliced sliced

{Tomato, Bread}

{True, False}

{Counter}

{True, False}

ℂ

𝑓&'()*+! 𝑓&'()*+"

𝑓,-

Object

Bool

Object

Is a natural transformation

𝛼: 𝐺 ⇒ 𝐹

𝐺: ℂ → Set 𝐹: ℂ → Set

In this example, 𝛼 is monic.
SetSet

Language of Planning Domains

3 November 2022A. Aguinaldo 18

Def. A planning domain, 𝑃, consists of a set of action
schemas with parameters (parameters), preconditions
(precond), effects (effect).

Preconditions and effects in an action operator consist
of a conjunction of fluents.

A set of action operators can be lifted to be universally
quantified over all variables to form an action schema.
Preconditions and effects in an action operator consist
of a conjunction of literals.

Planning domains are a set of atomic action operators that can be composed to form a
sequence of actions, or task plan.

Categorically, a STRIPS-based planning domain can be
represented as a symmetric monoidal category where
the generating objects are literals, the generating arrows
are action operators, and the tensor product is conjunction.
Positive and negated sentences are considered unique
objects with no relation.
Aguinaldo A., Regli W. Encoding Compositionality in Classical Planning Solutions. IJCAI
Workshop on Generalization in Planning 2021.

(:action pick-up-object
:parameters (?target-obj - Object ?support-obj - Object

?agent - Agent)
:precond (and (not (has ?agent ?target-obj)) (on

?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

(:action pick-up-object
:precond (and (not (has MyRobo Tomato)) (on Tomato

Counter))
:effect (and (has MyRobo Tomato) (not (on Tomato

Counter))))

Symmetric monoidal categories
Def. A symmetric monoidal category, 𝕄, is
a category with the following additional
properties:
• A unit object, 𝐼 ∈ 𝕄
• A tensor product, ⨂:𝕄×𝕄 → 𝕄

• An associative isomorphism,
𝛼#,%,&: 𝑋⨂𝑌 ⨂ 𝑍 → 𝑋⨂(𝑌⨂𝑍)

• Left and right unitor isomorphisms,
𝜌': 𝐼 ⊗ 𝑋 → 𝑋 and 𝜌(: 𝑋 ⊗ 𝐼 → 𝑋

• And a braiding isomorphism,
𝐵#,%: 𝑋 ⊗ 𝑌 → 𝑌⊗𝑋

3 November 2022A. Aguinaldo 19

(:action pick-up-object
:parameters (?target-obj - Object ?support-obj - Object

?agent - Agent)
:precond (and (not (has ?agent ?target-obj)) (on

?target-obj ?support-obj))
:effect (and (has ?agent ?target-obj)

(not (on ?target-obj ?support-obj))))

pick-up-object

(not (has ?agent ?target-obj)) (on ?agent ?target-obj)

(has ?agent ?target-obj) (not (on ?agent ?target-obj))Joyal, A.; and Street, R. 1991. The geometry of tensor calculus, I. Advances in Mathematics 88(1): 55 –
112. ISSN 0001-8708. doi:https://doi.org/10.1016/0001- 8708(91)90003-P. URL
http://www.sciencedirect.com/ science/article/pii/000187089190003P.

𝕄

1 generating arrow
4 generating objects

Functor between symmetric monoidal categories

3 November 2022A. Aguinaldo 20

pick-up-object

(not (has ?agent ?target-obj)) (on ?agent ?target-obj)

(has ?agent ?target-obj) (not (on ?agent ?target-obj))

Symmetric Monoidal Category, 𝕄

pick-up-object

(not (has ?agent ?target-obj)) (on ?agent ?target-obj)

(has ?agent ?target-obj) (not (on ?agent ?target-obj))

Symmetric Monoidal Category, 𝕄′

slice-object

(not (sliced ? obj))

(sliced ? obj)

Objects:
• X = (not (has ? agent ? target − obj))
• Y = (on ? agent ? target − obj)
• Z = (has ? agent ? target − obj)
• U = (not (on ? agent ? target − obj))

Objects:
• X = (not (has ? agent ? target − obj))
• Y = (on ? agent ? target − obj)
• Z = (has ? agent ? target − obj)
• U = (not (on ? agent ? target − obj))
• T = (not (sliced ? obj))
• R = (sliced ? obj)

Arrows:
• pick−up−object: X⊗ Y → Z⊗U

Arrows:
• pick−up−object: X⊗ Y → Z⊗U
• slice−object: T → R

𝐻: 𝕄 → 𝕄′

Symmetric monoidal functor,
𝐻, is a functor that
preserves monoidal and
braiding isomorphisms.

Affordance relation using functors: Object maps

3 November 2022A. Aguinaldo 21

Planning Domain

Scene Graph

grounding, 𝐺

Scene Graph

Planning Domain

reverse grounding, 𝐺’

(:action pick-up-object
:parameters (?target-obj - Object ?support-

obj - Object)
:precond (on ?target-obj ?support-obj)
:effect(not (on ?target-obj ?support-obj)))

⟼

(:action pick-up-object
:parameters (?target-obj - Object ?support-

obj - Object)
:precond (on ?target-obj ?support-obj)
:effect(not (on ?target-obj ?support-obj)))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

⟼

Showing only object maps

Functor 𝑮 Functor 𝑮’

Affordance relation using functors: Arrow maps

3 November 2022A. Aguinaldo 22

Planning Domain

Scene Graph

grounding, 𝐺

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object)
:precond (on ?target-obj ?support-

obj)
:effect(not (on ?target-obj

?support-obj)))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object)
:precond (on ?target-obj ?support-obj)
:effect(not (on ?target-obj ?support-

obj)))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object)
:precond (on ?target-obj ?support-

obj)
:effect(not (on ?target-obj

?support-obj)))

Affordance relation using functors: Arrow maps

3 November 2022A. Aguinaldo 23

Scene Graph

Planning Domain

reverse grounding, 𝐺’

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object)
:precond (on ?target-obj ?support-

obj)
:effect(not (on ?target-obj

?support-obj)))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object)
:precond (on ?target-obj ?support-obj)
:effect(not (on ?target-obj ?support-

obj)))

(:action slice-object
:parameters (?obj - Object)
:precond (not (sliced ?obj))
:effect (sliced ?obj))

(:action pick-up-object
:parameters (?target-obj - Object

?support-obj - Object)
:precond (on ?target-obj ?support-

obj)
:effect(not (on ?target-obj

?support-obj)))

Inferring affordances using symmetric delta lens

Def. Symmetric delta lenses
1. Delta lens 𝐺,𝜙 : 𝔸 → 𝔹
2. Delta lens 𝐺’, 𝜙’ : 𝔹 → 𝔸

Axioms
Lifting operations, 𝜙,𝜙′, provides
unique lifts. They preserve
compositions and identities.

Functors, 𝐺, 𝐺’, are arbitrary
functors.

Within each category, (𝔸,𝔹)
• Objects are models
• Arrows, 𝑓, are model updates (deltas)

24

𝔸 ~ category of planning domains
𝔹 ~ category of scene graphs

Johnson 2016

3 November 2022A. Aguinaldo

Claim. Symmetric delta lens construct the affordance relation.

What kind of queries can we answer?

Queries

3 November 2022A. Aguinaldo 25

Planning Domains

Scene Graph

grounding

Scene Graph

Planning Domains

reverse grounding

i. What is G(𝑎)? “What scene graph is afforded by this planning domain?”
ii. What is 𝜙 .,! ? “Given a change in the scene graph, what changes in the afforded

planning domains?”
iii. What is G′(𝑏′)? “What planning domain is afforded by this scene graph?”
iv. What is 𝜙 0,1#

? “Given a change in the afforded planning domains, what changes
are necessary in the scene graph?”

Ongoing Work
Operationalization and evaluation

3 November 2022A. Aguinaldo 30

Computational categories in development

31

https://github.com/AlgebraicJulia/Catlab.jl

A. Aguinaldo. Using categorical logic for AI planning. 2022. Blogpost: https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/

Features
q C-sets (copresheaves)
q Symmetric monoidal categories
q Categorical database migration
q RDF to C-set serialization
q PDDL to SMC serialization
q Lenses

3 November 2022A. Aguinaldo

In collaboration with Evan Patterson,
James Fairbanks, Owen Lynch, Kris
Brown, Sophie Libkind

https://www.algebraicjulia.org/blog/post/2022/09/ai-planning-cset/

3 November 2022A. Aguinaldo 33

Thanks for listening!
Please feel free to reach out with questions, suggestions, or related projects.

Angeline Aguinaldo
aaguinal@cs.umd.edu

3 November 2022A. Aguinaldo 34

